Seismic Inverse Scattering via Discrete Helmholtz Operator Factorization and Optimization

نویسندگان

  • SHEN WANG
  • JIANLIN XIA
چکیده

We present a joint seismic inverse scattering and finite-frequency (reflection) tomography program, formulated as a coupled set of optimization problems, in terms of inhomogeneous Helmholtz equations. We use a higher order finite difference scheme for these Helmholtz equations to guarantee sufficient accuracy. We adapt a structured approximate direct solver for the relevant systems of algebraic equations, which addresses storage requirements through compression, to yield a complexity for computing the gradients or images in the optimization problems that consists of two parts, viz., the cost for all the matrix factorizations which is O(rN log N) times the number of frequencies, and the cost for all solutions by substitution which is O(N log(r log N)) times the number of frequencies times the number of sources (events), where N = n if n is the number of grid samples in any direction, and r is a parameter depending on the preset accuracy and the problem at hand. With this complexity, the multi-frequency approach to inverse scattering and finite-frequency tomography becomes computationally feasible with large data sets, in dimensions d = 2 and 3.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acoustic inverse scattering via Helmholtz operator factorization and optimization

We present a joint acoustic/seismic inverse scattering and finite-frequency (reflection) tomography program, formulated as a coupled set of optimization problems, in terms of inhomogeneous Helmholtz equations. We use a higher order finite difference scheme for these Helmholtz equations to guarantee sufficient accuracy. We adapt a structured approximate direct solver for the relevant systems of ...

متن کامل

Dilations‎, ‎models‎, ‎scattering and spectral problems of 1D discrete Hamiltonian systems

In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...

متن کامل

On 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solver

We consider the modeling of (polarized) seismic wave propagation on a rectangular domain via the discretization and solution of the inhomogeneous Helmholtz equation in 3D, by exploiting a parallel multifrontal sparse direct solver equipped with Hierarchically Semi-Separable (HSS) structure to reduce the computational complexity and storage. In particular, we are concerned with solving this equa...

متن کامل

Mittag-Leffler’s function, Vekua transform and an inverse obstacle scattering problem

This paper studies a prototype of inverse obstacle scattering problems whose governing equation is the Helmholtz equation in two dimensions. An explicit method to extract information about the location and shape of unknown obstacles from the far field operator with a fixed wave number is given. The method is based on: an explicit construction of a modification of Mittag-Leffler’s function via t...

متن کامل

Multidimensional Inverse Quantum Scattering Problem and Wiener-Hopf Factorization*

\Ve consider the direct and inverse scattering for the n-dimensional Schrodinger equation, n 2: 2, with a potential having no spherical symmetry. Sufficient conditions are given for the existence of a Wiener-Hopf factorization of the corresponding scattering operator. This factorization leads to the solution of a related Riemann-Hilbert problem, which plays a key role in inverse scattering.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011